机器学习 归一化
机器学习中的归一化(Normalization)是一种预处理技能,用于调整数据集的特征值,使其具有相同的标准或散布。归一化在机器学习中非常重要,由于它能够协助模型更好地学习,防止某些特征由于其数值规模较大而主导模型的学习进程。
归一化一般分为两种类型:线性归一化和非线性归一化。
1. 线性归一化:将数据特征缩放到一个固定规模,一般是或。常见的线性归一化办法包含: 最小最大归一化(MinMax Normalization):将特征值缩放到或规模。 Zscore归一化(Zscore Normalization):将特征值缩放到均值为0,标准差为1的散布。
2. 非线性归一化:将数据特征缩放到特定的散布,如正态散布。常见的非线性归一化办法包含: 对数归一化(Log Normalization):将特征值取对数,适用于数值规模较大的数据。 标准化(Standardization):将特征值缩放到均值为0,标准差为1的散布,但不改动其原始散布。
在机器学习中,归一化能够带来以下优点:1. 进步模型的泛化才能:归一化能够下降模型对特征标准灵敏性的影响,进步模型的泛化才能。2. 加速模型的收敛速度:归一化能够加速模型的学习速度,由于模型不需求在特征标准上进行调整。3. 防止数值安稳性问题:归一化能够防止由于特征标准差异导致的数值安稳性问题,如梯度爆破或梯度消失。
归一化也或许带来一些问题:1. 信息丢掉:归一化或许丢掉某些特征的信息,特别是当特征值具有特定意义时。2. 对异常值的灵敏:归一化或许对异常值灵敏,由于异常值或许会对归一化进程产生较大影响。
因而,在运用归一化时,需求依据具体问题挑选适宜的归一化办法,并留意归一化或许带来的问题。
机器学习中的归一化:进步模型功能的关键过程
在机器学习中,数据预处理是一个至关重要的过程,它直接影响着模型的功能和泛化才能。归一化(Normalization)是数据预处理中的一个重要环节,它经过调整数据散布,使得不同特征之间的数值巨细变得可比,然后进步模型的练习功率和准确性。本文将深入探讨归一化的概念、办法及其在机器学习中的运用。
什么是归一化?
界说
归一化是指将数据缩放到一个特定的规模,一般是[0, 1]或[-1, 1],以便于模型处理。归一化的意图是消除不同特征之间的标准差异,使得每个特征在模型练习中具有相同的权重。
原因
在实践国际中,不同特征的数据量级或许相差很大。例如,年纪和收入这两个特征,年纪一般以年为单位,而收入或许以万元为单位。假如直接将这些特征输入到模型中,或许会导致模型在练习进程中对某些特征赋予过大的权重,然后影响模型的功能。
归一化的办法
最小-最大归一化
最小-最大归一化(Min-Max Normalization)是一种常见的归一化办法,它将数据缩放到[0, 1]或[-1, 1]的规模。公式如下:
\\[ X_{\\text{norm}} = \\frac{X - X_{\\text{min}}}{X_{\\text{max}} - X_{\\text{min}}} \\]
其间,\\( X \\) 是原始数据,\\( X_{\\text{min}} \\) 和 \\( X_{\\text{max}} \\) 分别是特征的最小值和最大值。
Z-Score标准化
Z-Score标准化(Z-Score Normalization)也称为均值-标准差标准化,它将数据转换为均值为0、标准差为1的散布。公式如下:
\\[ X_{\\text{norm}} = \\frac{X - \\mu}{\\sigma} \\]
其间,\\( \\mu \\) 是特征的平均值,\\( \\sigma \\) 是特征的标准差。
小数归一化
小数归一化(Decimal Scaling)是一种简略且有用的归一化办法,它经过乘以10的幂来调整数据的巨细。公式如下:
\\[ X_{\\text{norm}} = X \\times 10^{\\text{scale}} \\]
其间,\\( \\text{scale} \\) 是一个正整数,用于确认数据的巨细。
归一化在机器学习中的运用
进步模型功能
归一化能够明显进步模型的功能,尤其是在运用梯度下降等优化算法时。归一化后的数据能够加速模型的收敛速度,进步模型的准确性和泛化才能。
防止数值不安稳
在核算进程中,假如数据量级相差很大,或许会导致数值不安稳,然后影响模型的练习。归一化能够防止这种状况的产生。
进步模型的可解释性
归一化后的数据使得不同特征之间的数值巨细变得可比,有助于了解模型对各个特征的灵敏程度。
归一化是机器学习中一个重要的数据预处理过程,它经过调整数据散布,消除不同特征之间的标准差异,然后进步模型的功能和泛化才能。在实践运用中,应依据具体问题和数据特色挑选适宜的归一化办法。
- 上一篇:量子机器学习,敞开智能核算新时代
- 下一篇:怎么学习编程机器人,入门攻略
猜你喜欢
- AI
能做ppt的ai,智能化年代的新挑选
当然能够!我能够协助你创立一个简略的PPT。请告诉我你需求什么样的内容,比方主题、关键、图片或其他任何你想要包括的信息。AI赋能PPT制造:智能化年代的新挑选一、AIPPT的鼓起:智能化工作的必然趋势在曩昔,制造PPT需求消耗很多时刻和精...
2024-12-25 1 - AI
吴恩达Cousera机器学习课程,敞开人工智能学习之旅
吴恩达(AndrewNg)在Coursera上开设的《机器学习》课程是入门人工智能范畴的经典资源,合适初学者。这门课程全面介绍了机器学习、数据发掘和计算模式识别,涵盖了监督式学习(如线性回归、逻辑回归、支撑向量机、神经网络)、无监督学习(...
2024-12-25 1 - AI
ai家具归纳城,未来家居购物的新趋势
AI家居官方商城供给一站式的全屋定制家具服务,包含全体衣柜、榻榻米、电视柜、餐边柜、书橱、玄关鞋柜、吧台酒柜等全屋家具定制。用户能够先检查3D效果图规划,再进行定制和选购家具。此外,AI家居还供给全体家装规划调配服务,致力于为用户供给时髦、...
2024-12-25 1 - AI
儿童学习编程机器人,敞开未来智能之门
1.玛塔编程机器人:特色:玛塔编程机器人适宜4到9岁的孩子,选用无屏幕什物编程,经过编程块来操控机器人,规划对低龄小朋友十分友爱。玛塔创想编程机器人还获得了美国堤利威格玩具奖和腾讯教育2020年度新锐科技立异教育品牌奖。适...
2024-12-25 3 - AI
ai全称,人工智能的全面知道
AI的全称是“人工智能”(ArtificialIntelligence),它是指由人制造出来的体系所表现出来的智能。人工智能是核算机科学的一个分支,它妄图了解智能的本质,并出产出一种新的能以人类智能类似的办法做出反响的智能机器,该范畴的研...
2024-12-25 1 - AI
ai著作归纳出现,技能与艺术的完美交融
1.广告范畴:麦当劳与AIGC协作:2023年4月,麦当劳推出了一组由AI与顾客、粉丝一起发明的宣扬广告,这些广告交融了麦当劳的经典元素和我国传统文明符号,如青铜、白玛瑙和青花瓷等。2.视觉艺术:AI视觉构思汇:上影股份...
2024-12-25 1 - AI
机器学习书面考试,全面解析常见题型与应对战略
基础知识1.界说与概念:如监督学习、无监督学习、强化学习等。2.模型与算法:如线性回归、决策树、支撑向量机、神经网络等。3.评价方针:如准确率、召回率、F1分数、ROC曲线等。算法了解1.算法原理:解说算法的作业原理,如怎么操练...
2024-12-25 1 - AI
机器学习 豆瓣,机器学习在豆瓣电影引荐体系中的运用
1.《机器学习》:作者:周志华简介:这本书是机器学习范畴的入门教材,涵盖了机器学习根底知识的各个方面,尽量削减数学知识的运用,适宜初学者。2.《机器学习》:作者:周志华简介:这本书介绍了26种机器学习模型...
2024-12-25 1